Hall	Tick	et Nu	ımbe	r:				

Code No.: 21912

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.Tech. (CSE: CBCS) I-Semester Main Examinations, December-2018

Mathematical Foundations of Computer Science

Time: 3 hours

Max. Marks: 60

Note: i) Answer ALL questions in Part-A and any FIVE from Part-B
ii) Use of Normal, t, F, x² - distribution tables are permitted.

Q.N	lo.		Ste	m of the	question	1			M	L	CO	PC
				(10 × 2	= 20 Ma	irks)			417-415			
1.	What is random	variable?	Give exa	mple.				ni.	2	2	1	3
2.	How mean and distribution?	variance	are four	nd using	momen	nt gener	rating func	tion of a	2	2	1	3
3.	State Central Lin	nit theorer	n.						2	1	2	3
4.	Find variance of	Uniform 1	Distribut	ion.					2	3	2	3
5.	Define Random	Sampling	and give	example	e.				2	2	3	3
6.	What do you me			-					2	2	3	3
7.	Distinguish betw				ics.				2	2	4	3
8.	State Level of Si								2	1	4	3
9.	Explain Regressi						1		2	2	5	3
10.	Explain method	-							2	2	5	3
		. 17		3 (5 × 8 :	= 40 Ma	rks)						
11.	a) A continuous variance.	s RV X h					Find k, r	nean and	. 4	3	1	3
	b) For the joint p below:	probability	distribu	ition of t	wo rand	om vari	ables X and	Y given	4	3	deser	3
		Y	1	2	3	4	Total					
	·	X	4/36	3/36	2/36	1/36	10/36					
		2	1/36	3/36	3/36	2/36	9/36					
	. 4	3	5/36	1/36	1/36	1/36	8/36		,			
		. 4	1/36	2/36	1/36	5/36	9/36		-			
	T1 1 1 1	Total	11/36	9/36	7/36	9/36	1					
	ii) (d distrib	ution of	X given		$e ext{ of } Y = 1$	and that				
	O	of Y given	the valu	e of X =	2.							
12.	a) In a distribute weight and 8 mean and sta	9.97% of	the item	s are und	ler 70 ki	logram			4	2	2	3
	b) The daily co	onsumptio	n of mi	lk in a	city, in	excess			4	5	2	3
	approximatel $\lambda = 2$. The c	ity has a d	aily stoc	k of 30,0	000 litres							
	the stock is in			nnle of s	ize n fro	m a nor	mal distrib	ution with	4	2	3	3
13.	the stock is in a) Let X ₁ , X known varian											

14. a				boys had the fol 1, 88, 83, 95, 98,			18201 65	4	3	4	3
						TO of	1000 Eind				
				ne assumption of				1			
			de range in v	which most of the	e mean 1.Q	. values of sam	iples of 10	3.111			
1.1		oys lie.	1			1DC 11	Cr.				2
D				otes for two cand				4	4	4	3
				the residence of							
				hether the natur	e of the a	area is related	to voting				
	p	reference	in this election								
			Area	Votes	-	Total	algarity on	NA T			
			7	A	B	1000	Sentency has	Nation of			
			Rural	620	380	1000		Valend			
			Urban	550	450	1000	Limit theory	LEWIN			
			Total	1170	830	2000	must and The				,
15. a	O	f forged and metal:	alloy bar and	on the number of the percentages	of two alle	oying elements	present in	4	4	5	3
		Numb	per of Twists	Percentage of ele	ement A P	ercentage of eler	ment B	O BILL			
			У	X ₁		X2	neoning at	0 157			
			41	1		5	land philes	Elmi)			.14
			49	2		5	a bo				11
			69	3		5					
			65	4	15 (1) = 1-	5					
			40			10	25 A M ST 670	IT-LES			
			50	2		10		,501			
			58	3		10	Hittadaya In				
			57	4		10					
		-	31	1		15					
			36	2		15					
			44	3		15					
			57	4	COLUMN TO STATE	15					
			19	1		20					
			31	2		20					
			43	3		20					
	175	it a langt		4	:44		·h a				
b	o:	f twists re he follow	equired to bre ving are the n	ssion plane and u eak one of the ba- umbers of minut he morning, x, ar	rs when x ₁ : es it took 1	= 2.5 and $x_2 = 1$ 0 machines to a	2.	4	3	5	3
				X	у	b oct m gallace					
				11.1	10.9		gyppon and	77111			
				10.3	14.2						
				12.0	13.8						
				15.1	21.5						
				13.7	13.2	HISTORY BUILD					
				18.5	21.1			111			
			,	17.3	16.4	memi-ri		7 11			
			Altamore a	14.2	19.3						
				14.8 15.3	17.4 19.0						
					17.0	The second second					
	-	Calculate	coefficient o	f correlation.							

6. a	1)	For the bi	variate p	robabilit	y distri	bution o	f X and	Υ,			4	3	1	3
			Y	1	2	3	4	5	6					
			X 0	0	0	1/32	2/32	2/32	3/32					
			1	1/16	1/16	1/8	1/8	1/8	1/8					
			2	1/32	1/32	1/64	1/64	0	2/64					
		find: i)	P (X ≤	1, Y = 2	2),									
) P (X ≤											
			i) P (Y =	, .										
) P (X <	,	,									
t)	X is a nor								ies that	4	2	2	3
		i) $26 \le X$	\leq 40,	ii)	$X \ge 43$	5, and	iii	X-30	1 > 5.					
17.		Answer as	ny <i>two</i> o	f the foll	owing:									
8	1)	Explain h	ow to ge	nerate E	stimato	rs by usi	ng maxi	mum Li	kelihoo	d method.	4	2	3	3
	_	*								producing	4	3	4	3
			-							two mines:				
		- Tuesdy (Mine 1:				8,070	8,340	1	7				
			Mine 2:		1		8,140	7,920	7,840					
				1					1					
								the diffe	rence b	etween the				
		Means of			•									
(2)	The expec									4	2	5	3
			-				_			n a certain				
		date were							ned out	, the				
		elapsed ti			. The re									
		Age of	Part (in h	rs):	40 6	55 90	5 30	10 8	80 85	70 25				
		Remain	ing Life (in hrs):	30 2	20 10	80 40	65 1	5 15	20 50				
		Determine	e the coe	fficients	of reg	ression a	nd regre	ssion cu	rve usin	g the non-				
		~ occining	1110 000		27 - 26					0				

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	52.5
2	Knowledge on application and analysis (Level-3 & 4)	42.5
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	5.0